# ECHO EOSDIS ClearingHOuse

# George Percivall NASA/GST



From a presentation by:

Keith Wichmann – Global Science and Technology, Inc. and Robin Pfister - NASA/GSFC

# What Is ECHO?

#### Functionally

- Clearinghouse of spatial and temporal metadata
- Order broker
- User and provider account service
- Services clearinghouse and broker (future)

#### Objectives

- ECHO is a portal to Earth Science metadata.
- It allows providers of data to share their metadata and offload some of their search responsibilities.
- It also brokers orders from clients to the appropriate providers, providing tracking services for both the client and the provider.
- ECHO presents a messaging interface based on XML, but does not currently provide a GUI.

# Why ECHO?

- ECHO relieves providers from providing continuous, scalable searches and order interfaces
  - Providers can schedule regular maintenance (and deal with unscheduled maintenance) without directly impacting users
  - ECHO acts as a persistent cache of metadata similar to search engines on the internet
  - ECHO brokers orders and will hold the order until the provider is ready to receive it
- ECHO allows a variety of clients to connect to it
  - ECHO provides a single place on the internet to perform geospatially and temporally enabled searches for NASA's (and possibly other's) Earth Science data.
  - ECHO applies e-commerce and B2B (business to business) technologies to support client remote access
- ECHO will also handle services
  - A clearinghouse of services will also be maintained
  - The brokering system will also handle services

# **ECHO Metadata Access**





- Present an API for organizations to connect their own user interfaces and programs to
- Make it easy for providers of Earth Science data and services to participate in the system
- Provide searches that respond quickly
- Broker orders for both data and services
- Minimize operational costs
- Build upon advances in industry and use ecommerce systems as a model
- Build a system that can be scaled up to handle large numbers of requests

### What Does ECHO Enable?

#### For Users

- Access to a cache of Earth Science metadata in one place, regardless of provider down time
- Order data from a single system: ECHO handles the complexity of breaking up the order for each provider.
- GUIs that interact directly with this clearinghouse of data to find data and services and to place orders for that data can be community oriented
- Different access paradigms can be provided (browse vs. search)
- The service infrastructure provides a broader range of interoperable functions than would be provided by a truly centralized system
- Truly spatial searches not just bounding box
- Decentralizes development of end user functionality.

#### For Providers

- Reduces the machine workload required for supporting searches, but still maintains control of data
- Relieves scalability and availability requirements
- Makes services available to larger community
- Reduces need for V0 servers

# **ECHO** Provider Participation

- Categorization of providers by location of metadata
  - Metadata Providers
    - Participate by placing a copy of their metadata in the clearinghouse
  - Search Providers
    - Participate by receiving distributed searches and responding with metadata (Not yet implemented)
- Categorization of providers by order interactions
  - Order Distribution Providers
    - Because of the need to stage data dynamically or the need to charge for data access, an order process is needed
  - Non-order Distribution Providers
    - No order process needed, data is available via an URL
- Categorization of providers by what they provide
  - Data Providers provide Earth Science data
  - Service Providers provide additional processing capabilities (Not yet implemented)

Service Provider

# **Provider Context**

**Search Providers** 

Distributed Search Provider Search Prov. Online, free distribution and the second

Non-order Distribution

Order Distribution

Distributed I Search Provider Search Prov Order Distrib. O (Quote optional) Quote optionary

**Metadata Providers** Metadata Provider Online, free distribution

Metadata Provider Order Distrib. O (Quote optional) (Quon opnomin)

distribution

Search Result

Metadata\_

Quote Req. Quote

Order

Order Status

Stat. Req.

Status

Clients

Client

Client

Client

Client

Data

FTP Request/Data

E

0

### **ECHO Provider Interfaces**

- Provider → ECHO
  - Provider registration interface
    - Update addresses, email, etc.
  - Metadata update
    - XML files representing collections and granules sent to ECHO via FTP
  - Provider policy interface (future)
    - Method to establish parameters of how the provider participates in the ECHO system
  - User registration information interface (future)
  - Order history interface (future)
    - List of open orders, history of orders placed
- ◆ ECHO → Provider
  - Order entry, status, cancellation (f) and quote (f)

# Client Context

FTP Req/Data





Data

# **ECHO Client Interfaces**

- User Account Registration
  - Ability to create accounts and modify information
- Catalog Services
  - Based on OpenGIS (not fully compatible yet)
  - Ability to query metadata clearinghouse and save queries
  - Ability to manipulate result sets
  - Domain level query language (AQL)
- Order Services
  - Ability to request data, quotes, status of orders, order history

#### **XML**

- ECHO uses XML as the basis of message and data interchange with both clients and providers
  - XML/Java mapping file allows a configuration tool to define how a conversion from the XML message to native Java types is performed.
- Synchronicity tool to define XML based APIs
  - Generates HTML documentation, DTDs for the API, deployable EJB stubs, java parameter classes and an XML/java mapping file synchronized to each other.
- XML2XML tool
  - This tool accepts as input either XML or DTD files of two different schemas. It is then used to generate a mapping from one schema to the other. It generates an XSLT file that can then be executed to do the translation.

# Enterprise Java Beans

- BEA WebLogic is the infrastructure providing the basis for the API interfaces and the supporting business logic
  - This is the same infrastructure used at major ecommerce sites such as Amazon and British airways
- Toplink is used to connect the EJBs to oracle for persistent storage capabilities
- Java remote method invocation is used as the protocol and XML as the payload format for distributed access to the system
  - Other protocols are possible, such as HTTP, SMTP, FTP, CORBA, COM

# Internal Architecture

HTTP Server SMTP Server Z39.50 Server RMI Server XML Parser/Translation BEA WebLogic TopLink **JDBC JDBC** Persisted Metadata Objects SQL Load XML Parser/Translation SMTP Server FTP Server



### **ECHO** Timeline

- Operational prototype software is currently up along with reference documentation (<a href="http://beamish.gsfc.nasa.gov:4000">http://beamish.gsfc.nasa.gov:4000</a>)
- By June, we expect to have a few ECS datasets in the system and available for order
- ORNL data is already available
- New functions and improvements should roll out about every 4 months
- Project website: http://dangermouse.gst.com/ECHO